Business intelligence systems provide an effective solution from large volumes of data for multidimensional online computing and analysis. Usually, in a decision-making process, organisations and enterprises, require several internal and/or external cubes which are often heterogeneous. Most of the time, the structure of these cubes is unknown to the decision-makers. To analyse a phenomenon, the decision-maker seeks among sets of cubes, in a collection, the cube which responds better to his need. In this context, we propose an approach that enables decision-makers to express their needs via a query expressed in a natural language, returns top-K relevant cubes and designs/constructs new cubes when no, or few deployed cubes are relevant. We propose a tool called RD-cubes-query implementing our approach in a ROLAP architecture. We use this tool in some experiments to validate our approach.