“…On the other hand, methods that try to separate signal and noise in an alternative domain use Fourier (e.g., Stewart & Schieck, 1989; Hashemi et al., 2008), wavelet (e.g., Mousavi & Langston, 2016; Irani Mehr & Abedi, 2017), curvelet (e.g., Neelamani et al., 2008), seislet (e.g., Fomel & Liu, 2010), Radon (e.g., Trad et al., 2003) and other transforms. Recent data‐driven methods for noise attenuation include dictionary learning (e.g., Nazari Siahsar et al., 2017; X. Wang & Ma, 2019; Zhou et al., 2020; Almadani et al., 2021; Sui et al., 2023), deep learning (e.g., Yu et al., 2019; Zhao et al., 2019; Zhu et al., 2019; Saad & Chen, 2020, 2021; Wang, Yang, et al., 2022; Farmani et al., 2023; Markovic et al., n. d.) and hybrid methods (e.g., Farmani et al., 2022; Qian et al., 2022; L. Liu & Ma, 2023). The deep learning methods either directly attenuate the noise or detect the noise for other noise attenuation algorithms.…”