To improve the accuracy and efficiency of multiobjective design optimization for a multicomponent system with complex nonuniform loads, an efficient surrogate model (the decomposed collaborative optimized Kriging model, DCOKM) and an accurate optimal algorithm (the dynamic multiobjective genetic algorithm, DMOGA) are presented in this study. Furthermore, by combining DCOKM and DMOGA, the corresponding multiobjective design optimization framework for the multicomponent system is developed. The multiobjective optimization design of the carrier roller system is considered as a study case to verify the developed approach with respect to multidirectional nonuniform loads. We find that the total standard deviation of three carrier rollers is reduced by 92%, where the loading distribution is more uniform after optimization. This study then compares surrogate models (response surface model, Kriging model, OKM, and DCOKM) and optimal algorithms (neighbourhood cultivation genetic algorithm, nondominated sorting genetic algorithm, archive microgenetic algorithm, and DMOGA). The comparison results demonstrate that the proposed multiobjective design optimization framework is demonstrated to hold advantages in efficiency and accuracy for multiobjective optimization.