Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Lithium is a critical mineral in a wide range of current technologies, and demand continues to grow with the transition to a green economy. Current lithium mining and extraction practices are often highly ecologically damaging, in part due to the large amount of water and energy they consume. Biomineralization is a natural process that transforms inorganic precursors to minerals. Microbial biomineralization has potential as an ecofriendly alternative to current lithium extraction techniques. This work demonstrates Lysinibacillus sphaericus biomineralization of lithium chloride to lithium hydroxide. Quantitative analysis of biomineralized lithium via the 2-(2-hydroxyphenyl)-benzoxazole fluorescence assay reveals significantly greater recovery with L. sphaericus than without. Furthermore, L. sphaericus biomineralization is specific to lithium over sodium. The nanoparticles produced were further characterized via Fourier transform infrared and transmission electron microscopy analysis as crystalline lithium hydroxide, which is an advanced functional material. Finally, ESI–LC/MS was used to identify several proteins involved in this microbial biomineralization process, including the S-layer protein. Through the isolation of L. sphaericus ghosts, this work shows that the S-layer protein alone plays a critical role in the biomineralization of crystalline lithium hydroxide nanoparticles. Through this study of microbial biomineralization of lithium with L. sphaericus, there is potential to develop innovative and environmentally friendly extraction techniques.
Lithium is a critical mineral in a wide range of current technologies, and demand continues to grow with the transition to a green economy. Current lithium mining and extraction practices are often highly ecologically damaging, in part due to the large amount of water and energy they consume. Biomineralization is a natural process that transforms inorganic precursors to minerals. Microbial biomineralization has potential as an ecofriendly alternative to current lithium extraction techniques. This work demonstrates Lysinibacillus sphaericus biomineralization of lithium chloride to lithium hydroxide. Quantitative analysis of biomineralized lithium via the 2-(2-hydroxyphenyl)-benzoxazole fluorescence assay reveals significantly greater recovery with L. sphaericus than without. Furthermore, L. sphaericus biomineralization is specific to lithium over sodium. The nanoparticles produced were further characterized via Fourier transform infrared and transmission electron microscopy analysis as crystalline lithium hydroxide, which is an advanced functional material. Finally, ESI–LC/MS was used to identify several proteins involved in this microbial biomineralization process, including the S-layer protein. Through the isolation of L. sphaericus ghosts, this work shows that the S-layer protein alone plays a critical role in the biomineralization of crystalline lithium hydroxide nanoparticles. Through this study of microbial biomineralization of lithium with L. sphaericus, there is potential to develop innovative and environmentally friendly extraction techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.