The latest technologies and growth in availability of image storage in day to day life has made a vast storage place for the images in the database. Several devices which help in capturing the image contribute to a huge repository of images. Keeping in mind the daily input in the database, one must think of retrieving those images according to certain criteria mentioned. Several techniques such as shape of the object, Discrete Wavelet transform (DWT), texture features etc. were used in determining the type of image and classifying them. Segmentation also plays a vital role in image retrieval but the robustness is lacking in most of the cases. The process of retrieval mainly depends on the special characteristics possessed by an image rather than the whole image. Two types of image retrieval can be seen. One with a general object and the other which may be specific to some type of application. Modern deep neural networks for unsupervised feature learning like Deep Autoencoder (AE) learn embedded representations by stacking layers on top of each other. These learnt embedded-representations, however, may degrade as the AE network deepens due to vanishing gradient, resulting in decreased performance. We have introduced here the ResNet Autoencoder (RAE) and its convolutional version (C-RAE) for unsupervised feature based learning. The proposed model is tested on three distinct databases Corel1K, Cifar-10, Cifar-100 which differ in size. The presented algorithm have significantly reduced computation time and provided very high image retrieval levels of accuracy.