Abstract. The specific surface area (SSA) of a soil is commonly estimated from adsorption isotherms determined in a limited range of relative pressures (p/p 0 ), admitting a non fractal model. Nitrogen adsorption (NAI) and desorption (NDI) isotherms determined over the full range of p/p 0 have been described using the multifractal approach. This study aimed to assess effects of soil texture on the multifractality of NAIs and NDIs, and to analyze the association between multifractal parameters and soil properties. Six soil profiles were taken to get two groups of samples with contrasting pedogenetic origin, 15 texture (medium or clayey), susceptibility to water erosion and quality for agricultural uses. These two soil groups also were significant differences in SSA and cation exchange capacity (CEC), but not in organic matter content (OMC). Consistent with previous studies, the scaling properties of both NAIs and NDIs from all the soil horizons studied could be fitted reasonably well with multifractal models. Values of parameters D -5 , D 1 , D 2 and D 5 , extracted from the generalized dimension function, D q , were higher for clayey soils during adsorption, but during desorption all of them were higher for medium 20 textured soils. Therefore, the measure was more evenly distributed for clayey soils during adsorption and for medium textured soils during desorption. Width of D q function given by parameter (D -5 -D 5 ) was significantly higher clayey soils for NAIs, but not significant differences were detected for NDIs; subsequently scaling heterogeneity of NAIs was higher for clayey than for medium textured soil. Differences in multifractal behaviour of NAIs and NDIs were consistent with a wider hysteresis loop of the medium texture soils compared to that of the clayey soils. Linear correlations were found between 25 parameters D -5 and (D -5 -D 5 ) and clay content or SSA, which were positive and negative for NAIs and NDIs, respectively.Agronomical and environmental characterization of these soil groups with contrasting properties be enhanced by evaluating SSA and by inspecting NAIs and NDIs for multifractality.