Surface evolution for a conductor electrode under pulsed megagauss (MG) magnetic field was investigated. Stainless steel rods with 3 mm diameter were driven by 8 MA, 130 ns (10%–90%) current pulse in a series of shots on the Primary Test Stand. Experimental data from two complementary diagnostic systems and simulation results from one-dimensional magneto-hydrodynamics code reveal a transition phase for instability development. The transition, which begins as the conductor surface starts to expand, lasts about 40 ns in the pulse. It ends after the thermal plasma is formed, and striation electrothermal instability growth stops but magneto-Rayleigh-Taylor instability (MRTI) starts to develop. An expanding velocity which grows to about 2.0 km/s during the transition phase was directly measured for the first time. The threshold magnetic field for thermal plasma formation on the stainless steel surface was inferred to be 3.3 MG under a rising rate of about 66 MG/μs, and after that MRTI becomes predominant for amplitude growth in surface perturbation.