Superhydrophobic and superoleophilic cotton fabric was successfully prepared with fluorinated silica sol via a facile sol–gel method. A fluorinated polymeric sol–gel precursor (PHFBMA‐MTS) was synthesized via free‐radical polymerization by using hexafluorobutyl methacrylate (HFBMA) in the presence of (3‐mercaptopropyl)trimethoxysilane (MTS) as the chain transfer agent, which led to the formation of fluoropolymer with alkoxysilane end groups. Then the fluorinated silica sol was prepared by introducing PHFBMA‐MTS as the co‐precursor of tetraethylorthosilicate (TEOS) in the sol–gel process with ammonium hydroxide as the catalyst, which was then used to fabricate superhydrophobic and superoleophilic fabric coatings through a simple dip‐coating method. The coated fabrics showed superhydrophobic property with a high water contact angle of 154.1° and superoleophilic property with an oil contact angle of 0°. Moreover, the coated fabrics still kept superhydrophobicity even after ultrasonic treatment, as well as for organic solutions, acidic solutions. Thus, the coated fabrics were successfully applied to separate oil–water mixture with separation efficiency up to 99.8%. More importantly, the separation efficiency had no significant change after 20 cycles of oil–water separation. These present a simple, low‐cost, and durable approach to achieve industrialized application of coated fabrics in oil–water separation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47005.