Technical lignins from the biorefinery, pulp, and paper industries are largely underutilized, even though this aromatic and randomly structured biopolymer could be an interesting raw material for advanced applications in addition to bulk daily goods. Recently, colloidal lignin particles (CLPs) have gained much of the research interests due to the attractive multifunctional properties of the biopolymer. Utilization of lignin in nanoparticulate morphology resolves most of the drawbacks when using lignin (heterogeneity and low solubility). Stable lignin nanodispersions in different formulations is an attractive method to prepare tailored nanobiomaterials. Potential value-added applications include adhesives for wound sealing, edible coatings for foods, fiber modification for textiles to improve adhesion, hydrophobicity, antimicrobial and anti-oxidative properties of the material, as recently shown using chamois and nanocellulose model matrixes. Moreover, CLPs could be used as carriers for enzymes, emulsifiers for colloids, adsorbents in water purification and controlled-release vectors for drugs and pesticides. In this contribution the recent advances are highlighted.