Polyurethane networks based on vegetable oils have very heterogeneous composition, and it is difficult to find a close correlation between their structure and properties. To establish benchmark structure-properties relationships, we have prepared model polyurethane networks based on triolein and 4,4'-diphenylmethane diisocyanate (MDI). Cross-linking in the middle of fatty acid chains leaves significant parts of the triglyceride as dangling chains. To examine their effect on properties, we have synthesized another polyurethane network using triolein without dangling chains (removed by metathesis). The structure of polyols was studied in detail since it affects the structure of polyurethane networks. The network structure was analyzed from swelling and mechanical measurements and by applying network and rubber elasticity theories. The cross-linking density in both networks was found to be close to theoretical. The triolein-based model network displayed modulus (around 6 MPa), tensile strength (8.7 MPa), and elongation at break (136%), characteristic of hard rubbers. Glass transition temperatures of the networks from triolein and its metathesis analogue were 25 and 31.5 degrees C, respectively.