2024
DOI: 10.1063/5.0184933
|View full text |Cite
|
Sign up to set email alerts
|

Multifunctional scaffolds for biomedical applications: Crafting versatile solutions with polycaprolactone enriched by graphene oxide

G. Friggeri,
I. Moretti,
F. Amato
et al.

Abstract: The pressing need for multifunctional materials in medical settings encompasses a wide array of scenarios, necessitating specific tissue functionalities. A critical challenge is the occurrence of biofouling, particularly by contamination in surgical environments, a common cause of scaffolds impairment. Beyond the imperative to avoid infections, it is also essential to integrate scaffolds with living cells to allow for tissue regeneration, mediated by cell attachment. Here, we focus on the development of a vers… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 69 publications
0
1
0
Order By: Relevance
“…By reducing reliance on fossil fuels and non-renewable resources, as well as due to their biodegradability or recyclability, these materials contribute to ecological sustainability by minimizing environmental impact and promoting circular economy principles. Tailoring the properties of 3D printing materials to specific applications (functional properties) can lead to more efficient and sustainable solutions, e.g., lightweight and high-strength materials can reduce material usage and energy consumption in transportation and aerospace applications, conductive and sensor-integrated materials enable smart and energy-efficient systems for environmental monitoring and control, and bioinspired lightweight composites can mimic the structure and properties of natural water filtration membranes [114][115][116][117]. The primary focus lies in the development of biomaterials suitable for 3D printing, e.g., biocompatible poly(ethylene glycol)diacrylate/nano-hydroxyapatite composites for continuous liquid interface production [118]; colloidal biomaterials using photo-reactive gelatin nanoparticles, showcasing the control over architecture and properties of biomaterial constructs [119]; capillary alginate gel for 3D-printing biomaterial inks to facilitate the integration, infiltration, and vascularization of 3D-printed structures [120]; poly(octamethylene maleate (anhydride) citrate) and poly(ethylene glycol) diacrylate copolymers for biomedical applications, and the potential application of tunable biomaterials in personalized medicine [121]; or even post-decellularized printing of cartilage extracellular matrixes [122].…”
Section: History: Bridging Innovation With Environmental Sustainabilitymentioning
confidence: 99%
“…By reducing reliance on fossil fuels and non-renewable resources, as well as due to their biodegradability or recyclability, these materials contribute to ecological sustainability by minimizing environmental impact and promoting circular economy principles. Tailoring the properties of 3D printing materials to specific applications (functional properties) can lead to more efficient and sustainable solutions, e.g., lightweight and high-strength materials can reduce material usage and energy consumption in transportation and aerospace applications, conductive and sensor-integrated materials enable smart and energy-efficient systems for environmental monitoring and control, and bioinspired lightweight composites can mimic the structure and properties of natural water filtration membranes [114][115][116][117]. The primary focus lies in the development of biomaterials suitable for 3D printing, e.g., biocompatible poly(ethylene glycol)diacrylate/nano-hydroxyapatite composites for continuous liquid interface production [118]; colloidal biomaterials using photo-reactive gelatin nanoparticles, showcasing the control over architecture and properties of biomaterial constructs [119]; capillary alginate gel for 3D-printing biomaterial inks to facilitate the integration, infiltration, and vascularization of 3D-printed structures [120]; poly(octamethylene maleate (anhydride) citrate) and poly(ethylene glycol) diacrylate copolymers for biomedical applications, and the potential application of tunable biomaterials in personalized medicine [121]; or even post-decellularized printing of cartilage extracellular matrixes [122].…”
Section: History: Bridging Innovation With Environmental Sustainabilitymentioning
confidence: 99%