Porous silica, silica-cobalt, silica-zirconia and zirconia membranes were synthesized by the sol-gel method. Multi-step coating (two, six, and ten steps) was used to reduce the defectiveness of the mesoporous layer. Scanning electron microscopy (SEM) images indicated that an increase in the number of coating steps improved the mesoporous layer quality. The results obtained from gas permeability tests with nitrogen and argon, however, indicated a reduction in the gas permeability with increasing coating steps. The reduction in gas permeability from two to six coating steps was more pronounced than from sixto ten- coating steps. It was found that six-step coating was economically justified in obtaining a uniform mesoporous layer. The results of pore radius calculations by Knudsen flow mechanism revealed that the pores in the silica, silica-cobalt, and zirconia membranes were in the mesoporous range. The sols with a mean particle size more than 100 nm are not recommended for synthesis of mesoporous layer free of defects. Furthermore, the type of acid used as a catalyst is also important in obtaining a layer without defectiveness.