In the article on the basis of the theory of invariance the increase of accuracy of work of system with the converter for nuclear magnetic logging under condition of change of parameters of loading is considered. Based on the proposed functional scheme of two-channel control, formulas are given to determine the structural relationships and internal influences on the parameters of the control system components to reduce the impact of disturbances that occur both by changing load parameters and by changing the supply voltage. To maintain the required value of the carrier voltage amplitude, it is necessary to increase the reference voltage or decrease the amplitude of the sawtooth voltage, which is equivalent to increasing the gain of the feedback circuit. In this case, if you increase the gain of the feedback circuit, you must ensure that the stability of the system is maintained. The implementation of these proposals gives a more accurate formation of the bypass probing signal. The given functional scheme provides realization of regulation and stabilization of amplitude. The paper considers various options for reducing the effect of power supply perturbation on the output parameters of the converter. By changing the period of operation of the sawtooth voltage generator, which is determined by the frequency of the voltage-controlled generator and depends on the output frequency of the inverter, which varies depending on the parameters and properties of the rock during logging, the accuracy of stabilizing the amplitude of the probe signal increases. In the proposed two-channel control system, the first channel provides regulation and stabilization of the amplitude of the output voltage in accordance with the reference voltage. The second channel provides a change in the frequency of the sawtooth voltage generator by determining the period of the voltage-controlled generator from the phase detector, which determines the deviation of the real frequency from the frequency of the reference generator. The application of the above techniques allows to build circuit implementations of the system with transducers for nuclear magnetic logging, which meet the requirements for the accuracy of the formation of the bypass probing signal.