2009
DOI: 10.3102/0034654308325581
|View full text |Cite
|
Sign up to set email alerts
|

Multilevel Modeling: A Review of Methodological Issues and Applications

Abstract: This study analyzed the reporting of multilevel modeling applications of a sample of 99 articles from 13 peer-reviewed journals in education and the social sciences. A checklist, derived from the methodological literature on multilevel modeling and focusing on the issues of model development and specification, data considerations, estimation, and inference, was used to analyze the articles. The most common applications were two-level models where individuals were nested within contexts. Most studies were nonex… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
154
0
7

Year Published

2010
2010
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 156 publications
(161 citation statements)
references
References 93 publications
(100 reference statements)
0
154
0
7
Order By: Relevance
“…In line with recommendations from Dedrick et al (2009) underlying assumptions of the model, including the absence of an autoregressive structure, were assessed and found to be satisfactory. As is seen in Table 3, the null model predicted that students' participation in the study for one year was associated with an increase in SLK of 0.14 logits.…”
Section: Multivariate Analysismentioning
confidence: 68%
“…In line with recommendations from Dedrick et al (2009) underlying assumptions of the model, including the absence of an autoregressive structure, were assessed and found to be satisfactory. As is seen in Table 3, the null model predicted that students' participation in the study for one year was associated with an increase in SLK of 0.14 logits.…”
Section: Multivariate Analysismentioning
confidence: 68%
“…One advantage of multilevel analysis is that it allows one to take into account the dependency of observations between respondents from the same country. The practical benefit of multilevel modeling is that mean scores and standard errors of country-level variables can be estimated in an unbiased fashion (Dedrick et al 2009). Furthermore, multilevel modeling allowed us to estimate the extent to which dependent measures vary across countries, and the degree to which variance on each criterion can be explained by individual-level (i.e., micro) and countrylevel (macro) effects.…”
Section: Multilevel Modeling Analysesmentioning
confidence: 99%
“…La flexibilité qu'offre cette technique permet également de tenir compte des données manquantes dans l'estimation des paramètres (Dupéré et ai., 2007). Ainsi, SAS PROC MIXED estime des paramètres de façon à maximiser la vraisemblance (Dedricks, et al, 2009) (Akaike, 1974;Dupéré, et al, 2007;Singer, 1998) et BIC (Dupéré, et al, 2007;Schwarz, 1978) sont basés sur la vraisemblance et encourent une correction pour le nombre de paramètres à inclure dans le modèle final. En effet, parmi les modèles obtenus à l'aide des analyses, on retient le modèle qui minimise ces critères de sélection.…”
Section: Estime De Soiunclassified
“…En effet, parmi les modèles obtenus à l'aide des analyses, on retient le modèle qui minimise ces critères de sélection. Toutes les variables sont centrées autour de leur moyenne, ce qui facilite l'interprétation des résultats (Dedricks, et al, 2009). …”
Section: Estime De Soiunclassified