2017
DOI: 10.1007/978-3-319-66335-7_24
|View full text |Cite
|
Sign up to set email alerts
|

Multilevel Monte Carlo Method for Statistical Model Checking of Hybrid Systems

Abstract: Abstract. We study statistical model checking of continuous-time stochastic hybrid systems. The challenge in applying statistical model checking to these systems is that one cannot simulate such systems exactly. We employ the multilevel Monte Carlo method (MLMC) and work on a sequence of discrete-time stochastic processes whose executions approximate and converge weakly to that of the original continuous-time stochastic hybrid system with respect to satisfaction of the property of interest. With focus on bound… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 33 publications
0
2
0
Order By: Relevance
“…The closed-loop model fits into the framework of discrete-time hybrid systems, which has six continuous states, two discrete modes, and nonlinear vector fields in each mode. Although statistical techniques such as multilevel Monte Carlo method [17] can be used to verify properties of the continuous-time dynamics presented in [20], we transform the model into discrete-time polynomial dynamics and use barrier certificates [27] for the verification task.…”
Section: Specific Modelling Features We Briefly List the Key Featuresmentioning
confidence: 99%
See 1 more Smart Citation
“…The closed-loop model fits into the framework of discrete-time hybrid systems, which has six continuous states, two discrete modes, and nonlinear vector fields in each mode. Although statistical techniques such as multilevel Monte Carlo method [17] can be used to verify properties of the continuous-time dynamics presented in [20], we transform the model into discrete-time polynomial dynamics and use barrier certificates [27] for the verification task.…”
Section: Specific Modelling Features We Briefly List the Key Featuresmentioning
confidence: 99%
“…Problem 2.5.1. Let φ be a given LTL formula and let the robot evolve according to dynamics (16), with observation dynamics (17), and using a Bayesian filter defined by (18).…”
Section: Introduction: a Formal Belief Space Planning Problemmentioning
confidence: 99%