The idea, design, and tests of the novel GMI sensor are presented, based on the compensation measurement principle, where the local ‘zero-field’ minimum of the double-peak characteristic was utilized as a sensitive null detector. The compensation field was applied in real-time with the help of microprocessor-based, two-step, quasi-Newtonian optimization. The process of material parameters optimization through Joule-annealing of chosen amorphous alloys is described. The presented results of the prototype test unit show linear output characteristic, low measurement uncertainty, and resistance against time and temperature drift.