2021
DOI: 10.3390/electronics10192335
|View full text |Cite
|
Sign up to set email alerts
|

Multilink Internet-of-Things Sensor Communication Based on Bluetooth Low Energy Considering Scalability

Abstract: As the growth rate of the internet-of-things (IoT) sensor market is expected to exceed 30%, a technology that can easily collect and processing a large number of various types of sensor data is gradually required. However, conventional multilink IoT sensor communication based on Bluetooth low energy (BLE) enables only the processing of up to 19 peripheral nodes per central device. This study suggested an alternative to increasing the number of IoT sensor nodes while minimizing the addition of a central process… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 18 publications
0
2
0
Order By: Relevance
“…However, the huge (and increasing) number of connected devices, along with the requirement for fast, reliable, and cost-effective data transmission, pose a challenge for these kinds of systems [5]. Several Radio Frequency (RF)-based wireless technologies have been used to provide Internet of Things (IoT) services: WiFi [6], Bluetooth [7], Near-Field Communication (NFC) [8], or Zigbee [9], and also Low Power Wide Area Network (LPWAN) technologies such as SigFox [10], NB-IoT [11], or LoRa/LoRaWAN [12]. Nevertheless, these technologies present some drawbacks, such as Electromagnetic Interference (EMI), a limited frequency spectrum, and, in some cases, a lower data rate [5].…”
Section: Introductionmentioning
confidence: 99%
“…However, the huge (and increasing) number of connected devices, along with the requirement for fast, reliable, and cost-effective data transmission, pose a challenge for these kinds of systems [5]. Several Radio Frequency (RF)-based wireless technologies have been used to provide Internet of Things (IoT) services: WiFi [6], Bluetooth [7], Near-Field Communication (NFC) [8], or Zigbee [9], and also Low Power Wide Area Network (LPWAN) technologies such as SigFox [10], NB-IoT [11], or LoRa/LoRaWAN [12]. Nevertheless, these technologies present some drawbacks, such as Electromagnetic Interference (EMI), a limited frequency spectrum, and, in some cases, a lower data rate [5].…”
Section: Introductionmentioning
confidence: 99%
“…With the increasing demand for the Internet-of-Things (IoT), Bluetooth Low-Energy (BLE) has become a popular solution for short-range communication of wireless applications, such as wearable devices, sensor monitoring platforms, and smart cities [1][2][3][4][5]. However, due to the limitations of application scenarios, BLE devices often have the characteristics of small volume and are easy to carry.…”
Section: Introductionmentioning
confidence: 99%