The aim of this article is to study the problem of color medical images segmentation. The images represent pathologies of the digestive tract such as ulcer, polyps, esophagites, colitis, or ulcerous tumors, gathered with the help of an endoscope. This article presents the results of an objective and quantitative study of three segmentation algorithms. Two of them are well known: the color set back-projection algorithm and the local variation algorithm. The third method chosen is our original visual feature-based algorithm. It uses a graph constructed on a hexagonal structure containing half of the image pixels in order to determine a forest of maximum spanning trees for connected component representing visual objects. This third method is a superior one taking into consideration the obtained results and temporal complexity. These three methods were successfully used in generic color images segmentation. In order to evaluate these segmentation algorithms, we used error measuring methods that quantify the consistency between them. These measures allow a principled comparison between segmentation results on different images, with differing numbers of regions generated by different algorithms with different parameters.