Fifth-generation (5G) heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs) as the primary user (PU) is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs) improve spectrum utilization by allowing opportunistic spectrum access (OSA) for secondary users (SUs). The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.