IntroductionInternet of things (IoT) is growing fast in over the world [1][2][3][4][5][6][7]. In an IoT-based system for the autonomous vehicles, light detection and ranging (Lidar) sensors are often used to collect data of surrounding environments. Furthermore, in human-centric autonomous systems, robots also have several attached cameras and an inertial measurement unitglobal positioning system (IMU-GPS) sensor. In each frame, the Lidar sensor returns a point cloud that describes the terrain around the robot. The data from the Lidar sensor are transferred to a computer and split into two groups: ground and nonground. The first group includes ground points of terrain which a robot can traverse. On the other hand, the second group consists of nonground points which the robot cannot traverse such as cars, trees, walls, etc. If the terrain is sloping such that the autonomous robot cannot traverse it, the corresponding points are clustered into the nonground group. The segmentation of three-dimensional (3D) point cloud ground data is a fundamental
AbstractGround segmentation is an important step for any autonomous and remote-controlled systems. After separating ground and nonground parts, many works such as object tracking and 3D reconstruction can be performed. In this paper, we propose an efficient method for segmenting the ground data of point clouds acquired from multi-channel Lidar sensors. The goal of this study is to completely separate ground points and nonground points in real time. The proposed method segments ground data efficiently and accurately in various environments such as flat terrain, undulating/ rugged terrain, and mountainous terrain. First, the point cloud in each obtained frame is divided into small groups. We then focus on the vertical and horizontal directions separately, before processing both directions concurrently. Experiments were conducted, and the results showed the effectiveness of the proposed ground segment method. For flat and sloping terrains, the accuracy is over than 90%. Besides, the quality of the proposed method is also over than 80% for bumpy terrains. On the other hand, the speed is 145 frames per second. Therefore, in both simple and complex terrains, we gained good results and real-time performance.