A major intent of scientific research is the replication of the behaviour observed in natural spaces. In robotics, these can be through biomimetic movements in devices and inspiration from diverse actions in nature, also known as bioinspired features. An interesting pathway enabling both features is the fabrication of soft actuators. Specifically, 3D‐printing has been explored as a potential approach for the development of biomimetic and bioinspired soft actuators. The extent of this method is highlighted through the large array of applications and techniques used to create these devices, as applications from the movement of fern trees to contraction in organs are explored. In this review, different 3D‐printing fabrication methods, materials, and types of soft actuators, and their respective applications are discussed in depth. Finally, the extent of their use for present operations and future technological advances are discussed.