2023
DOI: 10.24113/ijoscience.v9i8.507
|View full text |Cite
|
Sign up to set email alerts
|

Multimodal Brain Tumor Detection Using Loss Aware Residual UNet Model

Anushka Kesharwani,
Rakesh Shivhare

Abstract: This research introduces a novel approach to multimodal brain tumor detection using the Residual UNet architecture. By integrating various imaging techniques, such as MRI and CT, the study offers a comprehensive perspective on brain anomalies. The Residual UNet architecture, an enhancement of the conventional UNet, is tailor-made for biomedical image segmentation. The architecture's residual connections optimize deeper network training, making it suitable for detecting intricate patterns in multimodal brain im… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?