The paper presents an information technology of digital twin for implementation in healthcare, in particular in e-health and m-health applications. The primary objective of this research is to develop a concept of digital twin information technology for medical decision support systems. The second objective is to analyse various medical data formats and to develop an approach to synchronization of multimodal medical data. The approach proposed in the paper will enable aggregation of multimodal data sequences obtained from a wide range of medical diagnostic equipment with the purpose of a patient's digital twin creation. The paper presents an analysis of data synchronization possibility and data representation formats for both single-channel and multi-channel biological signals, results of such investigations as blood tests, ultrasound research, magnetic resonance imaging etc. Digital twin technology will enable development of a new generation of medical decision support systems. A digital twin of a patient is a synchronized and aggregated multimodal data set obtained from a wide range of diagnostic medical equipment which is continuously updated and based on a personalized semantic modal of a patient. Since data are obtained from different medical devices and tools in various formats which directly do not fit for data synchronization and aggregation, the format of a file-wrapper that enables storing time characteristics of medical investigations (time stamps) in an evident form. It allows us to simplify a procedure of multimodal data aggregation while creating and continuous updating the digital twin of a patient. The process of digital twin forming includes the following stages: receiving of original data files in a device format (sonographic device, MRI scanner, electrocardiograph etc.), analysis of data and their time stamps, transformation of the original file to the format of a file-wrapper, data synchronization and aggregation, representation of multimodal data in a digital twin format for further storing and processing.