2022
DOI: 10.3233/apc220019
|View full text |Cite
|
Sign up to set email alerts
|

Multimodal Machine Learning Framework to Detect the Bipolar Disorder

Abstract: The current approaches for diagnosing mental disorders rely heavily on self-reported and clinical interview ratings. The development of an automatic recognition system assists in the early detection and discovery of biological markers for diagnostic purposes. In this paper, develops a multimodal machine learning model, where it processes multiple modalities like visual, acoustic and textual features using a cross-modality correlation. The study uses a Denoising Autoencoder that finds the multimodal representat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(10 citation statements)
references
References 12 publications
0
10
0
Order By: Relevance
“… Features Tools Studies Feature Category Low-level descriptors: jitter, shimmer, amplitude, pitch perturbation quotients, Mel-frequency cepstral coefficients (MFCCs), Teager-energy cepstrum coefficients (TECCs) [ 320 ], Discrete Cosine Transform (DCT) coefficients OpenSmile [ 267 ], COVAREP [ 321 ], YAAFE [ 322 ], Praat [ 323 ], Python libraries (pyAudioAnalysis [ 324 ], DisVoice [ 325 ]), My-Voice Analysis [ 326 ], Surfboard [ 327 ], librosa [ 328 ] [ 12 , 48 , 51 , 72 , 74 , 78 , 81 , 87 , 88 , 90 , 91 , 92 , 94 , 97 , 99 , 101 , 104 , 107 , 108 , 184 , 192 , 195 , 196 , 197 , 198 , 199 , 211 , 214 ] …”
Section: Table A1mentioning
confidence: 99%
See 4 more Smart Citations
“… Features Tools Studies Feature Category Low-level descriptors: jitter, shimmer, amplitude, pitch perturbation quotients, Mel-frequency cepstral coefficients (MFCCs), Teager-energy cepstrum coefficients (TECCs) [ 320 ], Discrete Cosine Transform (DCT) coefficients OpenSmile [ 267 ], COVAREP [ 321 ], YAAFE [ 322 ], Praat [ 323 ], Python libraries (pyAudioAnalysis [ 324 ], DisVoice [ 325 ]), My-Voice Analysis [ 326 ], Surfboard [ 327 ], librosa [ 328 ] [ 12 , 48 , 51 , 72 , 74 , 78 , 81 , 87 , 88 , 90 , 91 , 92 , 94 , 97 , 99 , 101 , 104 , 107 , 108 , 184 , 192 , 195 , 196 , 197 , 198 , 199 , 211 , 214 ] …”
Section: Table A1mentioning
confidence: 99%
“…Depression AV [43, SM [20,25,98, SS [99,100,104,105, WS [149][150][151][155][156][157][158]164,169,[171][172][173][178][179][180][181][182] Suicidal intent AV [100,183,184] SM [185][186][187][188][189] SS [100,147,190] WS [181,182,191] Bipolar disorder AV [101][102][103][192][193][194][195][196][197][198][199][200] SM…”
Section: Mental Health Conditions Data Sourcementioning
confidence: 99%
See 3 more Smart Citations