For easier cloud management, reversible data hiding is performed in an encrypted domain to embed label information. However, the existing schemes are not robust and may cause the loss of label information during transmission. Enhancing robustness while maintaining reversibility in data hiding is a challenge. In this paper, a multi-domain embedding framework in encrypted videos is proposed to achieve both robustness and reversibility. In the framework, the multi-domain characteristic of encrypted video is fully used. The element for robust embedding is encrypted through Logistic chaotic scrambling, which is marked as element-Ⅰ. To further improve robustness, the label information will be encoded with the Bose–Chaudhuri–Hocquenghem code. Then, the label information will be robustly embedded into element-Ⅰ by modulating the amplitude of element-Ⅰ, in which the auxiliary information is generated for lossless recovery of the element-Ⅰ. The element for reversible embedding is marked as element-II, the sign of which will be encrypted by stream cipher. The auxiliary information will be reversibly embedded into element-Ⅱ through traditional histogram shifting. To verity the feasibility of the framework, an anti-recompression RDH-EV based on the framework is proposed. The experimental results show that the proposed scheme outperforms the current representative ones in terms of robustness, while achieving reversibility. In the proposed scheme, video encryption and data hiding are commutative and the original video bitstream can be recovered fully. These demonstrate the feasibility of the multi-domain embedding framework in encrypted videos.