2023
DOI: 10.1038/s41598-023-37500-7
|View full text |Cite
|
Sign up to set email alerts
|

Multimodal multitask learning for predicting MCI to AD conversion using stacked polynomial attention network and adaptive exponential decay

Abstract: Early identification and treatment of moderate cognitive impairment (MCI) can halt or postpone Alzheimer’s disease (AD) and preserve brain function. For prompt diagnosis and AD reversal, precise prediction in the early and late phases of MCI is essential. This research investigates multimodal framework-based multitask learning in the following situations: (1) Differentiating early mild cognitive impairment (eMCI) from late MCI and (2) predicting when an MCI patient would acquire AD. Clinical data and two radio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 59 publications
0
0
0
Order By: Relevance