Introduction
Transsphenoidal surgery (TSS) is a well-known approach for the treatment of pituitary tumors. However, lateral misdirection and vascular damage, intraoperative CSF leakage, and optic nerve and vascular injuries are all well-known complications, and the risk of adverse events is more likely in less experienced hands. This prospective study was conducted to validate the accuracy of image-based segmentation in localization of neurovascular structures during TSS.
Methods
Twenty-five patients with pituitary tumors underwent preoperative 3TMRI, which included thin-sectioned 3D space T2, 3D Time of Flight and MPRAGE sequences. Images were reviewed by an expert independent neuroradiologist. Imaging sequences were loaded in BrainLab iPlanNet (16/25 cases) or Stryker (9/25 cases) image guidance platforms for segmentation and pre-operative planning. After patient registration into the neuronavigation system and subsequent surgical exposure, each segmented neural or vascular element was validated by manual placement of the navigation probe on or as close as possible to the target. The audible pulsations of the bilateral ICA were confirmed using a micro-Doppler probe.
Results
Pre-operative segmentation of the ICA and cavernous sinus matched with the intra-operative endoscopic and micro-Doppler findings in all cases (Dice Similarity Coefficient =1). This information reassured the surgeons with regard to the lateral extent of bone removal at the sellar floor and the limits of lateral exploration. Excellent correspondence between image-based segmentation and the endoscopic view was also evident at the surface of the tumor and at the tumor-normal gland interfaces. This assisted in preventing unnecessary removal of the normal pituitary gland. Image-guidance assisted the surgeons in localizing the optic nerve and chiasm in 64% of the cases and the diaphragma sella in 52% of cases, which helped to determine the limits of upward exploration and to decrease the risk of CSF leakage. The accuracy of the measurements was 1.20 + 0.21 mm (mean +/−SD).
Conclusion
Image-based pre-operative vascular and neural element segmentation, especially with 3D reconstruction, is highly informative preoperatively and potentially could assist less experienced neurosurgeons in preventing vascular and neural injury during TSS. Additionally, the accuracy found in this study is comparable to previously reported neuronavigation measurements. This novel preliminary study is encouraging for future prospective intraoperative validation with larger numbers of patients.