The nonlinearo ptical phenomenon second harmonic light scattering (SHS) can be used for detecting molecules at the membrane surfaces of living biological cells. Over the last decade, SHS has been developed for quantitatively monitoring the adsorption and transport of smalla nd medium size molecules (both neutral and ionic) across membranes in living cells. SHS can be operated with both time and spatial resolution and is even capableo fisolating molecule-membrane interactions at specific membrane surfaces in multi-membrane cells, such as bacteria. In this review,w e discuss select examples from our lab employingt ime-resolved SHS to study real-time molecular interactions at the plasma membranes of biological cells. We first demonstrate the utility of this method for determining the transport rates at each membrane/interfacei naGram-negative bacterial cell. Next, we show how SHS can be used to characterize the molecular mechanism of the centuryo ld Gram stain protocol for classifyingb acteria. Additionally,w ee xamine how membrane structures and molecular charge and polarity affect adsorption and transport, as well as how antimicrobial compounds alter bacteria membrane permeability.F inally, we discuss adaptation of SHS as an imaging modality to quantify molecular adsorption and transport in sub-cellular regionso fi ndividual livingcells.[a] Prof.