Multidisciplinary design optimization problems with competing objectives that involve several interacting components can be called complex systems. Nowadays, it is common to partition the optimization problem of a complex system into smaller subsystems, each with a subproblem, in part because it is too di cult to deal with the problem all-at-once. Such an approach is suitable for large organisations where each subsystem can have its own (specialised) design team. However, this requires a design process that facilitates collaboration, and decision making, in an environment where teams may exchange limited information about their own designs, and also where the design teams work at di erent rates, have different time schedules, and are normally not co-located. A multiobjective optimization methodology to address these features is described. Subsystems exchange information about their own optimal solutions on a peer-to-peer basis, and the methodology enables convergence to a set of optimal solutions that satisfy the overall system. This is demonstrated on an example problem where the methodology is shown to perform as well as the ideal, but "unrealistic" approach, that treats the optimization problem all-at-once.