The goal of this study was to explore the self-guided machining mechanism of boring and trepanning association (BTA) deep hole drilling and realize precise control of the machining quality. The motion analysis method was used to analyze the center motion trajectory of the drill during the entrance, and the self-guiding mechanism and hole-forming mechanism of BTA deep hole drilling were revealed. Considering the bending deformation of the drilling tube and the tool structure parameters, according to the elastic-plastic deformation theory and Hertzian contact theory, a novel analytical model of the extrusion contact between the guide pads and the hole wall of the BTA deep hole drilling was established for the theoretical prediction of the extrusion deformation and the machining hole diameter. Combined with the finite element method (FEM) simulation model, the variation law of the contact inclination angle, contact stress, and extrusion deformation of the guide pads and the hole wall with the drilling conditions were studied. The total extrusion deformation between the guide pad and the hole wall was between 10 and 50 μm. The maximum error between the FEM simulation results and the test results was 18.1%, and the maximum error between the analytical model results and the test results was 23.6%. The simulation and experimental results showed that the established extrusion contact model could accurately predict the extrusion deformation of the hole wall and the machining hole diameter.