1997
DOI: 10.1109/9.599969
|View full text |Cite
|
Sign up to set email alerts
|

Multiobjective output-feedback control via LMI optimization

Abstract: This paper presents an overview of a linear matrix inequality (LMI) approach to the multiobjective synthesis of linear output-feedback controllers. The design objectives can be a mix of H 1 performance, H 2 performance, passivity, asymptotic disturbance rejection, time-domain constraints, and constraints on the closed-loop pole location. In addition, these objectives can be specified on different channels of the closed-loop system. When all objectives are formulated in terms of a common Lyapunov function, cont… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
1,394
0
32

Year Published

2007
2007
2021
2021

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 2,190 publications
(1,429 citation statements)
references
References 31 publications
3
1,394
0
32
Order By: Relevance
“…An dieser Stelle werden die Erweiterungen in ausführlicherer Form diskutiert und die Herleitung des Verfahrens um Beweise ergänzt, die weder in [149] noch [225] geliefert wurden. Die durchgeführte Variablentransformation geht auf eine Idee aus [194] zurück, wo sie zum Entwurf dynamischer Ausgangsrückführungen herangezogen wurde.…”
Section: Linearisierende Variablentransformationunclassified
“…An dieser Stelle werden die Erweiterungen in ausführlicherer Form diskutiert und die Herleitung des Verfahrens um Beweise ergänzt, die weder in [149] noch [225] geliefert wurden. Die durchgeführte Variablentransformation geht auf eine Idee aus [194] zurück, wo sie zum Entwurf dynamischer Ausgangsrückführungen herangezogen wurde.…”
Section: Linearisierende Variablentransformationunclassified
“…The Lyapunov criteria involves searching for the matrix X, if it exists then the system is stable. A quadratic Lyapunov function is defined in (16) and its derivative in (17).…”
Section: H ∞ Controlmentioning
confidence: 99%
“…This is not as straight forward as for the state feedback case, where X = P −1 and F = FP −1 turn all constraints into LMIs. More details about the change of variables can be found in ( [17])…”
Section: Change Of Variablesmentioning
confidence: 99%
“…Integral action is embedded in order to ensure no errors for the closed-loop tracking of angular references. The controller minimizes a H 2 norm constraint for a set of vertices that define a convex polytope [10], [11]. Moreover, in order to take into account regional pole constraints, it is interesting to design the control K such that the closed loop poles of (A + B u K) lie in a suitable subregion of the complex left-half plane.…”
Section: Convex Optimization In Lmi Regionmentioning
confidence: 99%