ObjectivesTo evaluate the use of diffusion-weighted MRI (DW-MRI) and volume measurements for early monitoring of antiangiogenic therapy in an experimental tumor model.Materials and Methods23 athymic nude rats, bearing human colon carcinoma xenografts (HT-29) were examined before and after 6 days of treatment with regorafenib (n = 12) or placebo (n = 11) in a clinical 3-Tesla MRI. For DW-MRI, a single-shot EPI sequence with 9 b-values (10–800 s/mm2) was used. The apparent diffusion coefficient (ADC) was calculated voxelwise and its median value over a region of interest, covering the entire tumor, was defined as the tumor ADC. Tumor volume was determined using T2-weighted images. ADC and volume changes between first and second measurement were evaluated as classifiers by a receiver-operator-characteristic (ROC) analysis individually and combined using Fisher's linear discriminant analysis (FLDA).ResultsAll ADCs and volumes are stated as median±standard deviation. Tumor ADC increased significantly in the therapy group (0.76±0.09×10−3 mm2/s to 0.90±0.12×10−3 mm2/s; p<0.001), with significantly higher changes of tumor ADC than in the control group (0.10±0.11×10−3 mm2/s vs. 0.03±0.09×10−3 mm2/s; p = 0.027). Tumor volume increased significantly in both groups (therapy: 347.8±449.1 to 405.3±823.6 mm3; p = 0.034; control: 219.7±79.5 to 443.7±141.5 mm3; p<0.001), however, the therapy group showed significantly reduced tumor growth (33.30±47.30% vs. 96.43±31.66%; p<0.001). Area under the curve and accuracy of the ADC-based ROC analysis were 0.773 and 78.3%; and for the volume change 0.886 and 82.6%. The FLDA approach yielded an AUC of 0.985 and an accuracy of 95.7%.ConclusionsRegorafenib therapy significantly increased tumor ADC after 6 days of treatment and also significantly reduced tumor growth. However, ROC analyses using each parameter individually revealed a lack of accuracy in discriminating between therapy and control group. The combination of both parameters using FLDA substantially improved diagnostic accuracy, thus highlighting the potential of multi-parameter MRI as an imaging biomarker for non-invasive early tumor therapy monitoring.