Multipath is the major concern in GPS receivers that fade the actual GPS signal causes positioning error up to 10 m so special care need to be taken to mitigate the multipath effects. Numerous methods like hardware based antenna arrays technique, receiver based narrow correlator receiver, double -delta discriminator, Adaptive Multipath Estimator, Wavelet Transformation and Particle filter, Kalman filter based post receiver methods etc. used to resolve the problem. But some of the methods can only reduce code multipath error but not effective in eliminating carrier multipath error. Most of these techniques are based on the assumption that the Line-of-Sight (LOS) signal is stronger than the Non-Line of-Sight (NLOS) signals. However, in the scenarios where the LOS signal is weaker than the composite multipath signal, this approach may result in a bias in code tracking. In this chapter, different types of multipath mitigation and its limitation are described. The recent development in sparse signal processing based blind channel estimation is investigated to compensate the multipath error. The Rayleigh and Rician fading model with different multipath parameters are simulated to test the urban scenario. The inverse problem of finding the GPS signal is addressed based on the deconvolution approach. To solve linear inverse problems, the suitable kind of appropriate objective function has been formulated to find the signal of interest. By exploiting this methods, the signal is observed and the carrier and code tracking loop parameters are computed with minimal error.