The importance of reaction engineering in generating a myriad of products on which developed societies depend is outlined. The challenges of a political, economic, and technical nature that need to be addressed in rendering conversion of raw materials into desired products that are more environmentally friendly and sustainable are briefly discussed. It is shown that multiphase reactors are prevalent in all applications, and improvements in the reactor material and energy efficiencies lead to more environmentally benign processes. This requires, in addition to the selection of green process chemistry, systematic implementation of the multi-scale reaction engineering methodology to accomplish proper reactor type selection and scaleup for commercial applications. It is also illustrated that recent innovations in multiphase reaction engineering basically utilize two key concepts: process intensification (e.g., enhancement in mass and heat transfer rates) and simultaneous reaction and separation. Examples of these are discussed, such as micro-reactors, reactive distillation, etc. It is also shown that commercialization of bench-scale discoveries requires either scaleup in parallel or vertical scaleup. New tools for visualization of opaque multiphase flows and development of appropriate rational phenomenological multiphase reactor models for scaleup and design are also briefly discussed.