BackgroundThe effects of thrombus imaging characteristics on procedural and clinical outcomes after ischemic stroke are increasingly being studied. These thrombus characteristics – for eg, size, location, and density – are commonly analyzed as separate entities. However, it is known that some of these thrombus characteristics are strongly related. Multicollinearity can lead to unreliable prediction models. We aimed to determine the distribution, correlation and clustering of thrombus imaging characteristics based on a large dataset of anterior-circulation acute ischemic stroke patients.MethodsWe measured thrombus imaging characteristics in the MR CLEAN Registry dataset, which included occlusion location, distance from the intracranial carotid artery to the thrombus (DT), thrombus length, density, perviousness, and clot burden score (CBS). We assessed intercorrelations with Spearman’s coefficient (ρ) and grouped thrombi based on 1) occlusion location and 2) thrombus length, density and perviousness using unsupervised clustering.ResultsWe included 934 patients, of which 22% had an internal carotid artery (ICA) occlusion, 61% M1, 16% M2, and 1% another occlusion location. All thrombus characteristics were significantly correlated. Higher CBS was strongly correlated with longer DT (ρ=0.67, p<0.01), and moderately correlated with shorter thrombus length (ρ=−0.41, p<0.01). In more proximal occlusion locations, thrombi were significantly longer, denser, and less pervious. Unsupervised clustering analysis resulted in four thrombus groups; however, the cohesion within and distinction between the groups were weak.ConclusionsThrombus imaging characteristics are significantly intercorrelated – strong correlations should be considered in future predictive modeling studies. Clustering analysis showed there are no distinct thrombus archetypes – novel treatments should consider this thrombus variability.