The primary purposes of this study are to investigate the feasibility of electrochemical deposition treatment (EDT) as a comprehensive rehabilitation method for corrosion-induced deterioration in reinforced concrete with various severity levels, and to propose a guideline for the determination of critical factors to advance EDT. This study includes three experimental phases, each of which simulates the initiation (de-passivation), propagation (high corrosion activity), and acceleration (formation of a surface-breaking crack) periods of corrosion-induced deterioration. After completion of a series of accelerated corrosion tests, damaged concrete samples with different severity levels are rehabilitated by a series of EDT processes using a MgCl2 solution in an electrolyte. The main variables for this experiment are the concentration levels (0, 0.3, 1.0 and 3.0 M) of a MgCl2 solution for test phase 1, charging time (0, 2, and 7 days) in EDT for test phase 2, and configuration of pre- and post-treatment processes in EDT for test phase 3. The rehabilitation performance of EDT is evaluated by analyzing the AC impedance properties of the steel-and-concrete interface using electrochemical impedance spectroscopy (EIS) for the test phases 1 and 2, and microscopic alternation in concrete cracks using optical microscopic image and SEM/EDX. It is demonstrated that EDT is an effective method for preventing and mitigating corrosion-induced deterioration in the initiation and rust propagation periods of corrosion and for repairing (closing and filling) a corrosion-induced surface-breaking crack in the acceleration phase of corrosion. Corrosion-resistant performance of concrete increases as the concentration levels of a MgCl2 solution in an electrolyte increases and as the charging time in EDT increases. In addition, a post-treatment process (applying a NaOH solution) after the electrochemical deposition process significantly improves crack-repairing performance of EDT.