Numerical simulation of fluid-structure interaction is often attempted in the context of partitioned methods, where already existing solvers for fluid or structure alone are used jointly. Mostly this is done by exchanging information from time step to time step in an alternating fashion. These weak coupling methods are explicit and hence suffer from possible instabilities. Therefore often strong coupling -where equlibrium is satisfied jointly between fluid and structure in each time step -is desired; the simplest computational procedure is similar to the time stepping an alternating iteration. We show why also this approach may experience difficulties, and how they may be circumvented with block-Newton methods, still in the partitioned framework, by only using the solvers of the subproblems fluid and structure.