In this paper, stability and bifurcation of a two‐dimensional ratio‐dependence predator–prey model has been studied in the close first quadrant
double-struckR+2. It is proved that the model undergoes a period‐doubling bifurcation in a small neighborhood of a boundary equilibrium and moreover, Neimark–Sacker bifurcation occurs at a unique positive equilibrium. We study the Neimark–Sacker bifurcation at unique positive equilibrium by choosing b as a bifurcation parameter. Some numerical simulations are presented to illustrate theocratical results. Copyright © 2017 John Wiley & Sons, Ltd.