Aiming at a special type of ill-defined complicate multiple attributes group decision-making (MAGDM) problem, which exhibits hybrid complexity features of decision hesitancy, prioritized evaluative attributes, and unknown decision-makers' weights, we investigate an effective approach in this paper. To accommodate decision hesitancy, we employ a compound expression tool of interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) to help decision-makers elicit their assessments more comprehensively and completely. To exploit prioritization relations among evaluating attributes, we develop a prioritized weighted aggregation operator for IVDHFUBLS-based decision-making scenarios and then analyze its properties and special cases. To objectively derive unknown decision-makers' weighting vector, we next develop a hybrid model that simultaneously takes into account the overall accuracy measure of the individual decision matrix and maximizing deviation among all decision matrices. Furthermore, on the strength of the above methods, we construct an MAGDM approach and demonstrate its practicality and effectiveness using applied study on a green supplier selection problem.