This paper presents the manufacturing procedure and electrical properties of a microstrip line on flexible printed circuit boards (FPCBs) fabricated using the micro pattern transfer printing (MPTP) method for millimeter wave band application. The MPTP method presented herein is compared to the conventional FPCB process based on the degree of insertion loss as it pertains to the cross-sectional shape of the formed microstrip line. Electromagnetic field simulations were performed to confirm that the cross-sectional arch shape fabricated by the MPTP process reduces insertion loss in the high-frequency band. Based on the simulation, the microstrip transmission line was optimized to a width of 217 µm and a length of 30 cm, fabricated on a 50 µm thick poly-cyclohexylene dimethylene terephthalate (PCT) substrate to measure the insertion loss. The insertion loss fabricated using the MPTP method is measured as 0.37 dB/cm at 10 GHz, while the conventional FPCB is measured as 0.66 dB/cm. Through the analysis, it was confirmed that the FPCBs manufactured by the MPTP process show lower insertion loss compared to the conventional FPCBs.