“…Existing approaches to distractor selection use WordNet (Fellbaum, 1998) metrics (Mitkov and Ha, 2003;Chen et al, 2015), word embedding similarities (Jiang and Lee, 2017), thesauruses (Sumita et al, 2005;Smith et al, 2010), and phonetic and morphological similarities (Pino and Eskenazi, 2009). Other approaches consider grammatical correctness, and introduce structural similarities in an ontology (Stasaski and Hearst, 2017), and syntactic similarities (Chen et al, 2006). When using broader context, bigram or n-gram co-occurrence (Susanti et al, 2018;Hill and Simha, 2016), context similarity (Pino et al, 2008), and context sensitive inference (Zesch and Melamud, 2014) have also been applied to distractor selection.…”