2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12) 2012
DOI: 10.1109/icccnt.2012.6395889
|View full text |Cite
|
Sign up to set email alerts
|

Multiple classification system for fracture detection in human bone x-ray images

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
14
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 36 publications
(17 citation statements)
references
References 29 publications
0
14
0
3
Order By: Relevance
“…The features selected can also be used to alleviate human labelling, by selecting more representative training data for the medical expert [ 81 , 82 ]. Another approach to the improvement of ML performance is the combination of several techniques using a majority vote scheme [ 75 ], or the use of multi-stage classifiers [ 58 ] for segmentation of different spatially related tissues.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…The features selected can also be used to alleviate human labelling, by selecting more representative training data for the medical expert [ 81 , 82 ]. Another approach to the improvement of ML performance is the combination of several techniques using a majority vote scheme [ 75 ], or the use of multi-stage classifiers [ 58 ] for segmentation of different spatially related tissues.…”
Section: Discussionmentioning
confidence: 99%
“…X-rays have also been widely used for fracture detection, e.g. of the tibia [ 75 ], where texture and shape features were fed into three different ML algorithms: an ANN, k -NN, and SVM, and the outputs fused using a majority vote scheme. The combination of the classifiers using both types of features presented a significant improvement over using just one classifier, or only one feature type.…”
Section: Current Clinical Applicationsmentioning
confidence: 99%
“…Also, regions were not clearly demarcated according to those studies for different images of X-Ray. Some early studies also focused on identifying lung regions in chest X-Rays and they applied Markov Random field models [12], rule-based heuristics [13], and classifiers based on local features [14] with a different rate of success. One study has applied ASM for automatic segmentation of the patella in knee joint [15] with the help of a genetic algorithm.…”
Section: B Segmentation Of Bone From X-ray Images and Its Literaturementioning
confidence: 99%
“…Sedangkan CT-scan sering digunakan pada kasus patah tulang yang kompleks yang memerlukan visualisasi tiga dimensi (3D) [6]. Kedua instrumen tersebut telah memberikan hasil yang sangat akurat dalam mendeteksi kondisi permukaan tulang dan deteksi terjadinya patah tulang [7]. Namun, kedua instrumen tersebut memiliki kelemahan dengan adanya efek negatif radiasi sinar X dan ionisasi yang tidak dianjurkan dipergunakan pada pasien anak kecil/bayi, wanita hamil, dan pada beberapa pasien khusus, yang dapat memicu timbulnya penyakit yang lain [7], [8].…”
unclassified
“…Kedua instrumen tersebut telah memberikan hasil yang sangat akurat dalam mendeteksi kondisi permukaan tulang dan deteksi terjadinya patah tulang [7]. Namun, kedua instrumen tersebut memiliki kelemahan dengan adanya efek negatif radiasi sinar X dan ionisasi yang tidak dianjurkan dipergunakan pada pasien anak kecil/bayi, wanita hamil, dan pada beberapa pasien khusus, yang dapat memicu timbulnya penyakit yang lain [7], [8]. Oleh karena itu, dibutuhkan adanya peralatan deteksi patah tulang yang aman tanpa efek radiasi untuk berbagai kategori pasien dan peralatan tersebut harus mudah dalam pengoperasian.…”
unclassified