This work explores the use of ultrasound (US) as a means of intensifying the impregnation of apple cubes with vitamin B12 (cyanocobalamin). The effect of different US power densities (90 and 200 WL−1) and treatment times (5, 10, and 15 min) was evaluated, on vitamin load, vitamin stability, and physicochemical and microstructural properties of the fruit matrix. The US enhanced the impregnation producing high cyanocobalamin content products (0.12–0.19 mg vitamin/g db.). Vitamin losses in the sonication medium due to US application were not significant. Impregnated samples exhibited higher moisture and lower soluble solids with respect to the untreated fruit. Changes in chromatic coordinates were well correlated to vitamin uptake. Only at the highest treatment intensities (200 WL−1, 10, and 15 min) was a marked softening observed, which agreed with the microstructural changes observed in fruit tissues. Results permit US-assisted impregnation to be considered a promising technology in the preparation of vitamin B12 fortified apple cubes.