Abstract:A novel modified bridge-type dual input DC-DC converter, which is proficient for integrating distinct V-I characteristic sources such as solar-PV, wind, etc., and storages including battery, ultracapacitor, fuel cell, etc., is proposed in this paper. Three modes of operations such as boost, buck, and buck-boost are possible using the same structure of the converter, and the converter can operate even with the failure of any one of the input energy sources to deliver power to the load. A software simulation and experimental realization of the converter have been carried out for the buck, boost, and buck-boost operations. The voltage and current stress analysis of the power switches available in the converter have been carried out for the better selection of power switches. A simple power control strategy is proposed for the steady state, and dynamic performance analysis of the converter and performance comparison with existing converter topologies have been carried out based on the different parameters like duty ratio, efficiency, etc. The performance comparison shows that the proposed converter has high voltage gain, low voltage stress, reduced part counts and high efficiency.