2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA) 2014
DOI: 10.1109/dicta.2014.7008118
|View full text |Cite
|
Sign up to set email alerts
|

Multiple Instance Learning for Breast Cancer Magnetic Resonance Imaging

Abstract: In this thesis we evaluate the efficacy of multiple instance learning (MIL) as a 'pure' machine learning approach for the diagnosis of breast cancer in magnetic resonance images (MRI). The traditional approach for the diagnosis of breast cancer is based on region-of-interest (ROI) based single instance learning (SIL). In the ROI-based SIL, the classification of benign and malignant lesions depends on the features, which are extracted from segmented ROIs. But, an accurate segmentation of a ROI is a challenging … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2015
2015
2025
2025

Publication Types

Select...
3
2

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 62 publications
0
1
0
Order By: Relevance
“…MIL category Method Brain Tong et al (2014) AD classification global excl bag Chen et al (2015b) cerebral small vessel disease detection global instance Dubost et al (2017) enlarged perivascular space detection local instance Eye Venkatesan et al (2015) diabetic retinopathy classification global excl bag Quellec et al (2012) diabetic retinopathy classification global, local instance Schlegl et al (2015) fluid segmentation local instance Manivannan et al (2016) retinal nerve fiber layer visibility classification global, local instance Lu et al (2017) fluid detection global instance Breast Maken et al (2014) breast cancer detection global multiple Sanchez de la Rosa et al (2015) breast cancer detection global, local excl bag Shin et al (2017) mass localization, classification global, local instance Lung Dundar et al (2007) pulmonary embolism detection false positive instance Bi and Liang (2007) pulmonary embolism detection false positive instance Liang and Bi (2007) pulmonary embolism detection false positive instance Cheplygina et al (2014) COPD classification global multiple Melendez et al (2014) tuberculosis detection global, local instance Stainvas et al (2014) lung cancer lesion classification false positive instance Melendez et al (2016) tuberculosis detection global, local instance Kim and Hwang (2016) tuberculosis detection global, local instance Shen et al (2016) lung cancer malignancy prediction global, local instance Cheplygina et al (2017) COPD classification global instance Li et al (2017b) abnormality detection (14 classes) global, local instance Abdomen Dundar et al (2007) polyp detection false positive instance Wu et al (2009) polyp detection false positive instance Lu et al (2011) polyp detection, size estimation false positive instance Wang et al (2012) polyp detection false positive instance Wang et al (2015a) lesion detection global prim bag Wang et al (2015b) lesion detection global prim bag Histology/Microscopy Dundar et al (2010) brea...…”
Section: Reference Applicationmentioning
confidence: 99%
“…MIL category Method Brain Tong et al (2014) AD classification global excl bag Chen et al (2015b) cerebral small vessel disease detection global instance Dubost et al (2017) enlarged perivascular space detection local instance Eye Venkatesan et al (2015) diabetic retinopathy classification global excl bag Quellec et al (2012) diabetic retinopathy classification global, local instance Schlegl et al (2015) fluid segmentation local instance Manivannan et al (2016) retinal nerve fiber layer visibility classification global, local instance Lu et al (2017) fluid detection global instance Breast Maken et al (2014) breast cancer detection global multiple Sanchez de la Rosa et al (2015) breast cancer detection global, local excl bag Shin et al (2017) mass localization, classification global, local instance Lung Dundar et al (2007) pulmonary embolism detection false positive instance Bi and Liang (2007) pulmonary embolism detection false positive instance Liang and Bi (2007) pulmonary embolism detection false positive instance Cheplygina et al (2014) COPD classification global multiple Melendez et al (2014) tuberculosis detection global, local instance Stainvas et al (2014) lung cancer lesion classification false positive instance Melendez et al (2016) tuberculosis detection global, local instance Kim and Hwang (2016) tuberculosis detection global, local instance Shen et al (2016) lung cancer malignancy prediction global, local instance Cheplygina et al (2017) COPD classification global instance Li et al (2017b) abnormality detection (14 classes) global, local instance Abdomen Dundar et al (2007) polyp detection false positive instance Wu et al (2009) polyp detection false positive instance Lu et al (2011) polyp detection, size estimation false positive instance Wang et al (2012) polyp detection false positive instance Wang et al (2015a) lesion detection global prim bag Wang et al (2015b) lesion detection global prim bag Histology/Microscopy Dundar et al (2010) brea...…”
Section: Reference Applicationmentioning
confidence: 99%