Abstract:User modeling plays a fundamental role in industrial recommender systems, either in the matching stage and the ranking stage, in terms of both the customer experience and business revenue. How to extract users' multiple interests effectively from their historical behavior sequences to improve the relevance and personalization of the recommend results remains an open problem for user modeling. Most existing deep-learning based approaches exploit item-ids and category-ids but neglect fine-grained features like c… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.