2021
DOI: 10.1002/cta.2939
|View full text |Cite
|
Sign up to set email alerts
|

Multiple‐load wireless power transmission system through time‐division multiplexed resonators

Abstract: Summary This paper presents a wireless power transmission system which is able to deliver power to multiple loads by making use of a time‐division multiplexing technique. Similar loads are placed into the slots in a row, and two power transmitters, at the bottom and top, supply them with sufficient amount of power. This system operates in two phases; within one phase, the transmitters are in‐phase, and the resonators placed in odd slots are unloaded and act as power repeaters, and the resonators placed in even… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 33 publications
0
1
0
Order By: Relevance
“…The main fields of research in UHV transmission for the global electric grid interconnections are: UHV AC/DC substations and circuit design [146,147]; electromagnetically controlled environmental systems [148]; project management, construction and handling guidelines of tests on UHV equipments [149,150]; development of standard for testing of equipments; gas insulated transmission lines [151,152]; unmanned aerial and robot inspecting vehicles [153]; HVDC power grid protection and control [154][155][156]; performance and design evaluation of wireless, super-conductive and pipe power transmission technology [157][158][159][160][161].…”
Section: Development Of Uhv Transmission Systemsmentioning
confidence: 99%
“…The main fields of research in UHV transmission for the global electric grid interconnections are: UHV AC/DC substations and circuit design [146,147]; electromagnetically controlled environmental systems [148]; project management, construction and handling guidelines of tests on UHV equipments [149,150]; development of standard for testing of equipments; gas insulated transmission lines [151,152]; unmanned aerial and robot inspecting vehicles [153]; HVDC power grid protection and control [154][155][156]; performance and design evaluation of wireless, super-conductive and pipe power transmission technology [157][158][159][160][161].…”
Section: Development Of Uhv Transmission Systemsmentioning
confidence: 99%