2014
DOI: 10.1016/j.jfranklin.2014.09.015
|View full text |Cite
|
Sign up to set email alerts
|

Multiple model approach to linear parameter varying time-delay system identification with EM algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
12
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 37 publications
(12 citation statements)
references
References 26 publications
0
12
0
Order By: Relevance
“…By Schur complement, (15) can be obtained. Equation (14) can be also deduced from (40). Furthermore, by Theorem 1, the composite system (Σ 1 ) is weighted passive.…”
Section: Resultsmentioning
confidence: 92%
See 2 more Smart Citations
“…By Schur complement, (15) can be obtained. Equation (14) can be also deduced from (40). Furthermore, by Theorem 1, the composite system (Σ 1 ) is weighted passive.…”
Section: Resultsmentioning
confidence: 92%
“…In addition, time delays generally describe propagation phenomena, material, or energy transfer in intercommoned systems and data transmission in communication systems . They have been the main sources inducing oscillations, instability, and poor control performances.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Recently, the EM algorithm and its variants exhibit their superiority in the identification of hybrid systems with time‐delay. For example, Yang and Gao considered the identification of the LPV systems with unknown constant time‐delay and mode‐related time‐delay. Xie et al solved the identification problem of the linear systems with random time‐delay based on EM algorithm.…”
Section: Introductionmentioning
confidence: 99%
“…However, system identification of linear time-delay systems is a less developed area (Drakunov et al, 2006;Yang and Gao, 2014). Nakagiri and Yamamoto (1995) and Lunel (2001) illustrated the complexity and intractability of the identification of linear time-delay systems.…”
Section: Introductionmentioning
confidence: 99%