SUMMARYDNA methylation is a key epigenetic modification in human development and disease, yet there is limited understanding of its highly coordinated regulation. Here, we identified 818 genes that influence DNA methylation patterns in blood using large-scale population genomics data. By employing genetic instruments as causal anchors, we identified directed associations between gene expression and distant DNA methylation levels, whilst ensuring specificity of the associations by correcting for linkage disequilibrium and pleiotropy among neighboring genes. We found that DNA methylation patterns are commonly shaped by transcription factors that consistently increase or decrease DNA methylation levels. However, we also observed genes encoding proteins without DNA binding activity with widespread effects on DNA methylation (e.g. NFKBIE, CDCA7(L) and NLRC5) and we suggest plausible mechanisms underlying these findings. Many of the reported genes were unknown to influence DNA methylation, resulting in a comprehensive resource providing insights in the principles underlying epigenetic regulation.3