The Dynamic Multiobjective Shortest Path problem features multidimensional costs that can depend on several variables and not only on time; this setting is motivated by flight planning applications and the routing of electric vehicles. We give an exact algorithm for the FIFO case and derive from it an FPTAS for both, the static Multiobjective Shortest Path (MOSP) problems and, under mild assumptions, for the dynamic problem variant. The resulting FPTAS is computationally efficient and beats the known complexity bounds of other FPTAS for MOSP problems.